Биквадратное уравнение

Записываем число, тему урока, всю важную информацию в тетрадь и решённый пример.

Изучаем

Уравнение вида $ax^4+bx^2+c=0$, где x - переменная, a,b и с - некоторые числа, причём $a \neq 0$, называют биквадратным уравнением.

Чтобы решить уравнение $ax^4 + bx^2 + c = 0$ нужно сделать замену:

Заменить выражение x^2 на t.

А так как $x^4 = x^{2 \cdot 2} = x^2 \cdot x^2 = t \cdot t = t^2 = i \cdot x^4$ заменяем на $t^2 = i$ получаем новое уравнение:

$$at^2+bt+c=0$$

Такой способ решения уравнений называют методом замены переменной.

<u>Рассмотрим на конкретном примере:</u>

Решите уравнение $x^4 - 13x^2 + 36 = 0$

Решение:

<u>Решение:</u> Пусть $x^2 = t$. Тогда $x^4 = t^2$. Подставим в исходное уравнение, получим:

 $t^2-13t+36=0$ (a=1,b=-13,c=36) решим через дискриминант:

$$D=b^2-4ac=(-13)^2-4\cdot 1\cdot 36=169-144=25>0=$$
 $\ifmmode 2\else$ С хорня

$$t_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-(-13) + \sqrt{25}}{2 \cdot 1} = \frac{13 + 5}{2} = \frac{18}{2} = 9$$

$$t_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-(-13) - \sqrt{25}}{2 \cdot 1} = \frac{13 - 5}{2} = \frac{8}{2} = 4$$

А теперь самое важное, вернуться к первому этапу, Мы заменяли $\chi^2 = t$, а теперь из уравнения мы нашли $t_1 = 9$, $t_2 = 4$. Получим

$$x^{2}=9$$
 $x^{2}=t$
 $x^{2}=4$
 $x=\pm\sqrt{9}$
 $x=\pm\sqrt{4}$
 $x=\pm 3$
 $x_{1}=3, x_{2}=-3$
 $x_{3}=2, x_{4}=-2$

$$Other x_1 = 3, x_2 = -3, x_3 = 2, x_4 = -2$$

Любое биквадратное уравнение решается так же, как уравнение из ранее приведённого примера: вводят новую переменную $x^2 = t$, решают полученное квадратное уравнение, а затем возвращаются к переменной.

2. Решаем

№1. Выбери уравнение, которое является биквадратным

$$\bigcirc 26x-6$$

$$\bigcap 7x^4 + 26x^2 + 6 = 0$$

$$\bigcirc 7x + 6 = 0$$

$$\int x^2 + 26x + 7 = 0$$

№2. Решите уравнения

1)
$$x^4 - 50x^2 + 49 = 0$$

$$3) 4x^4 - 13x^2 + 3 = 0$$

1)
$$x^4 - 50x^2 + 49 = 0$$
; 3) $4x^4 - 13x^2 + 3 = 0$; 2) $x^4 - 5x^2 - 36 = 0$; 4) $3x^4 + 8x^2 - 3 = 0$.

4)
$$3x^4 + 8x^2 - 3 = 0$$

Решая уравнения смотри на предыдущий образец, не забывай вернуться к первому этапу, а главное, помни что если χ^2 равен отрицательному числу, то корней у такого выражения нет.