§17 Тригонометрические формулы

Всю новую, важную информацию, все формулы - всё записываем в своей рабочей тетради как положено, как мы делаем это в школе: тема, число, определения и т.д.

Вспоминаем

В прямоугольном треугольнике тригонометрические функции используются для вычисления сторон и острых углов треугольника.

Напомню, что определение синуса, косинуса, тангенса и котангенса нужно выучить НАИЗУСТЬ!

 $\sin \frac{\Pi POTUBOЛЕЖАЩИЙ \ KATET}{\Gamma U\Pi OTEHУ3A}$ (Синус это отношение противолежащего катета к гипотенузе)

 $\cos rac{\Pi P U Л E \mathcal{K} A \coprod U \check{U} \check{K} K A T E T}{\Gamma U \Pi O T E H \mathcal{Y} 3 A}$ (Косинус это отношение прилежащего катета к гипотенузе)

 $t\,g\,rac{\Pi POTUBOЛЕЖАЩИЙ \, KATET}{\Pi PUЛЕЖАЩИЙ \, KATET}$ (Тангенс это отношение противолежащего катета к прилежащему катету)

 $c\ tg \frac{\Pi P U Л E Ж A I Ц И Й K A T E T}{\Pi P O T U B O Л E Ж A I Ц И Й K A T E T}$ (Котангенс это отношение прилежащего катета к противолежащему катету)

Задание:

Перед тобой 3 примера, внимательно прочитай задание, проанализируй рисунок и заполни пропуски в столбце с решением.

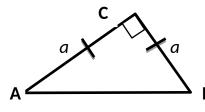
	юце с решением.		
Nº	Задание	Рисунок	Решение
Nº1	Найдите тангенс угла ∠С треуголь ника, изображённого на рисунке.	A peuryerp.p C	Тангенс угла в прямоугольном треуготношение противолежащего катета к прилежащему => $tg C = \frac{AB}{AC} = \boxed{=} = 0,75.$
№2	Найдите тангенс ∠АОВ изображённого на рисунке.	O pemyera.pgA	Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. => $tgAOB = \frac{1}{2} = 0,5$.
Nº3	На рисунке изображен параллелограмм $ABCD$. Используя рисунок, найдите $\sin\angle HBA$.	A H PEDEFORE	$\sin \angle HBA = \frac{AH}{AB} = \frac{3}{AB} => $ по т Пифагора найдём AB. $AB = \sqrt{AH^2 + BH^2} = $ $\sin \angle HBA = \frac{AH}{AB} = \frac{3}{AB} = 0,6.$

Переходим к тригонометрическим формулам, которые нужно так же выучить **НАИЗУСТЬ.** $\alpha - \dot{\epsilon}$ это буква называется альфа. В данных формулах она заменяет какую-то градусную меру острого угла прямоугольного треугольника. (переверни лист)

1)
$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$
 (Тангенс – это отношение $\sin \alpha \kappa \cos \alpha$)

$$ctg \, \alpha = \frac{\cos \alpha}{\sin \alpha}$$
 (Котангенс – это отношение $\cos \alpha \, \kappa \sin \alpha$)

2)
$$tg \alpha \cdot ctg \alpha = 1$$


3)
$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 (Основное тригонометрическое тождество)

4)
$$\cos(90^{\circ} - \alpha) = \sin \alpha$$

 $\sin(90^{\circ} - \alpha) = \cos \alpha$
 $tg(90^{\circ} - \alpha) = ctg\alpha$
 $ctg(90^{\circ} - \alpha) = tg\alpha$

Заметь, что все функции здесь просто меняются на противоположные.

Пример:
$$\cos(90°-25°)=\sin 25°$$

 $\sin(90°-63°)=\cos 63°$ и т.д.

Рассмотрим прямоугольный равнобедренный треугольник, в котором АС=ВС=а.

$$AB = \sqrt{a^2 + a^2} = \sqrt{2 a^2} = a \sqrt{2}$$

$$\sin \angle A = \frac{AC}{AB} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}}$$
. Избавимся от иррациональности в

знаменатели дроби.
$$\frac{1 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{2}}{2} = > \sin \angle A = \frac{\sqrt{2}}{2}$$

Так как треугольник ABC равнобедренный, то $\angle A = \angle B = (180\,^\circ - 90\,^\circ) : 2 = 90\,^\circ : 2 = 45\,^\circ$ =>sin 45 $^\circ = \frac{\sqrt{2}}{2}$.

$$\cos 45 \degree = \cos (90 \degree - 45 \degree) = \sin 45 \degree = \dot{\omega} \frac{\sqrt{2}}{2} \dot{\omega} = \cos 45 \degree = \frac{\sqrt{2}}{2}$$

$$tg 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\sqrt{2}}{2} : \frac{\sqrt{2}}{2} = 1$$

$$ctq 45$$
°=1

Так же можно найти синус, косинус, тангенс и котангенс углов в 30∘ и 60∘. Удобнее все эти значения записать в виде таблицы.

	$\alpha = 30^{\circ}$	α = 45°	$\alpha = 60^{\circ}$
sin α	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos α	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2
tg α	$\frac{\sqrt{3}}{3}$	1	√3
ctg α	√3	1	$\frac{\sqrt{3}}{3}$

бязательно выучить все определения синуса, косинуса, тангенса и котангенса, а так же в ыделенные формулы и таблицу!								